
ME 2-1: Erreur vrais

- Analyse de sesibilité
 - Changement à l'entrée et à la sortie
 - Section et déformation d'une poutre
 - Compost et température
 - Taux d'imposition marginal
- Propagation expression matricielle
 - Dans une addition
 - Dans une multiplication
 - Pour une combinaison

$$y = \mathbf{f}(l) \implies \delta y = \mathbf{F} \cdot \delta l$$

EPFL ME 2-2: Erreur maximale

- Dédinitions
 - Ecart-type et tolérance
 - Erreur absolue et relative
- Calcul d'incertitude
 - Addition et soustraction: somme des erreurs absolues
 - Multiplication: somme des erreurs relatives
 - Division? → exercice!

$$y = \mathbf{f}(l) \implies \varepsilon_y = |\mathbf{F}| \cdot \varepsilon_l$$

- Faiblesses des erreurs vrais et maximales
 - Comment tenir compte des corrélations des données ?
 - Comment obtenir les corrélations des résultats ?

EPFL

ME 2-3: Covariance et corrélation

- Matrices $\mathbf{K}_{ll}\left(\Sigma_{ll}\right)$ et \mathbf{R}_{ll}
 - Génération et interprétation :
 - ex. «Javelot» et «Cerceau» papier / calculette
 - Représentation et stockage :
 - ex. «Ballon» Python

- Lire les sections 2.1 à 2.4
- Prépare des questions!
- Inventaire des questions à 8:15, réponses dès 10:15
- Jeudi en salle cours avec votre ordinateur!
 - Env. 08:30 10:00, série 3 + corrigé séries 1 et 2

EPFL

ME 2-4: Propagation de variance

Définition

$$\delta y = \mathbf{F} \cdot \delta l \implies \mathbf{K}_{yy} = \mathbf{F} \cdot \mathbf{K}_{ll} \cdot \mathbf{F}^T$$

- Justification: additon de deux variables normales
 - Observations indépendantes (démo)
 - Observations corrélées (démo animation)
- Expression matricielle
 - Pour une multiplication
 - Pour ne combinaison
 - Générale

 On tient compte des corrélations à l'entrée et l'on obtient les corrélations à la sorite!